Skip to content

PandasConverter

QuantConnect.Python.PandasConverter

Bases: Object

Collection of methods that converts lists of objects in pandas.DataFrame

get_indicator_data_frame

get_indicator_data_frame(data: Any) -> DataFrame
get_indicator_data_frame(
    data: List[KeyValuePair[str, List[IndicatorDataPoint]]],
    extra_data: List[
        KeyValuePair[
            str, List[ValueTuple[datetime, Object]]
        ]
    ] = None,
) -> DataFrame

Converts a dictionary with a list of IndicatorDataPoint in a pandas.DataFrame

Parameters:

Name Type Description Default
data Any | List[KeyValuePair[str, List[IndicatorDataPoint]]]

PyObject that should be a dictionary (convertible to PyDict) of string to list of IndicatorDataPoint

required
extra_data Optional[List[KeyValuePair[str, List[ValueTuple[datetime, Object]]]]]

Optional dynamic properties to include in the DataFrame.

None

Returns:

Type Description
DataFrame

PyObject containing a pandas.DataFrame.

concat_data_frames

concat_data_frames(
    data_frames: List[Any],
    sort: bool = True,
    dropna: bool = True,
) -> Any

get_data_frame

get_data_frame(
    data: List[Slice],
    flatten: bool = False,
    data_type: Type = None,
) -> DataFrame

Converts an enumerable of Slice in a pandas.DataFrame

Parameters:

Name Type Description Default
data List[Slice]

Enumerable of Slice

required
flatten bool

Whether to flatten collections into rows and columns

False
data_type Type

Optional type of bars to add to the data frame If true, the base data items time will be ignored and only the base data collection time will be used in the index

None

Returns:

Type Description
DataFrame

PyObject containing a pandas.DataFrame.

to_string

to_string() -> str

Returns a string that represent the current object