Skip to content

PandasData

QuantConnect.Python.PandasData

PandasData(data: Any, time_as_column: bool = False)

Bases: Object

Organizes a list of data to create pandas.DataFrames

Initializes an instance of PandasData

is_custom_data

is_custom_data: bool

Gets true if this is a custom data request, false for normal QC data

levels

levels: int

Implied levels of a multi index pandas.Series (depends on the security type)

add

add(data: Any) -> None
add(trade_bar: TradeBar, quote_bar: QuoteBar) -> None

Signature descriptions:

  • Adds security data object to the end of the lists

  • Adds Lean data objects to the end of the lists

Parameters:

Name Type Description Default
data Optional[Any]

IBaseData object that contains security data

None
trade_bar Optional[TradeBar]

TradeBar object that contains trade bar information of the security

None
quote_bar Optional[QuoteBar]

QuoteBar object that contains quote bar information of the security

None

to_pandas_data_frame

to_pandas_data_frame(
    levels: int = 2,
    filter_missing_value_columns: bool = True,
) -> DataFrame
to_pandas_data_frame(
    pandas_datas: List[PandasData],
    skip_times_column: bool = False,
) -> Any

Signature descriptions:

  • Get the pandas.DataFrame of the current PandasData state

  • Helper method to create a single pandas data frame indexed by symbol

Parameters:

Name Type Description Default
levels Optional[int]

Number of levels of the multi index

2
filter_missing_value_columns Optional[bool]

If false, make sure columns with "missing" values only are still added to the dataframe

True

Returns:

Type Description
DataFrame | Any

pandas.DataFrame object.